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Abstract-The flow and heat transfer of a gas in a horizontal channel with a heated bottom surface, a 
cooled top surface, and adiabatic side walls is studied. Numerical solutions of the transient, three- 
dimensional Navier-Stokes and energy equations reveal that the fluid is unstable thermally for conditions 
of interest in chemical vapor deposition (CVD). The instability appears as a combination of transverse. 
traveling waves and longitudinal rolls. The unsteady nature of the flow and the heat transfer is shown for 
two Reynolds numbers, Re = IX/V, (5 and IO), Grashof number, Gr = g&H’/vi = 5000, Prandtl number, 
Pr = vo/q = 2/3. aspect ratios, L/H = 8 and W/H = 2, for the temperature ratio E = (T,- T&/T, = 0.01. 
corresponding to constant property flow. The instability results in an increase in the average heat transfer 

from I5 % to more than 40% above the fully developed condition in the absence of the instability. 

INTRODUCTION 

CHEMICAL vapor deposition (CVD) is an important 

process for fabricating micro-electronic components. 
Although widely used, the CVD process is not very 
well understood and empirical methods are often used 
for reactor design and for setting reactor operating 
conditions. In the CVD process, a mixture of reacting 
and inert gases, e.g. silane and helium, flows over a 
heated substrate. Upon heating, the reactant gases 

pyrolyze to form additional species that are trans- 
ported to the heated substrate where surface reactions 
produce a solid deposit, e.g. silicon. Several par- 

ameters can be controlled ; e.g. reactor geometry, gas 
flow rates and flow rate distributions, thermal bound- 

ary conditions on reactor surfaces, reactant gas com- 
position, etc. Some important quantities of interest in 
the fabrication of semiconductors with CVD are the 
rate and the uniformity of the deposition, and the 

sharpness of the interfaces between adjacent layers. 
Fluid flow and convective heat transfer are impor- 

tant factors in the CVD process as noted by Jensen 
[I], Giling [2], Coltrin ef al. [3], Ostrach [4], and 
Curtis and Dismukes [5], with buoyancy effects being 
significant in many cases. Recirculation regions can 

result in increased purge times of reactive gases and 
can have a detrimental effect on the sharpness of inter- 
faces between layers in semiconductor processing by 
CVD. If the deposition process is controlled by mass 
transport to the surface, the presence of boundary 
layers can adversely affect the uniformity of the solid 
being deposited and can result in a reduced rate of 
deposition. Thermally unstable secondary flows can 

result in significantly higher deposition rates ; 
however, if the secondary flow is steady the uniformity 

of the deposit can be impacted adversely. On the other 
hand, unstable, transient flows that sweep periodically 
through the reactor can result in uniform deposition in 
conjunction with significantly higher deposition rates. 

In general, the prediction of deposition rates and 

distributions in a CVD reactor would require the solu- 
tion of the three-dimensional, time-dependent con- 
servation equations of mass, momentum, and energy 
in the reactor geometry of interest with specified 

boundary conditions. In addition, chemical reaction 
mechanisms are required to describe the gas phase and 
the surface chemistry, and constitutive relations must 
be specified for the shear stress, heat flux, and mass 
diffusion flux. The complete solution of CVD prob- 
lems is not feasible at present; however, for some 
conditions and reactor geometries, CVD processes 
can be simplified to one-dimensional or two-dimen- 
sional (boundary layer) formulations (cf. Coltrin et 
al. [3]; Pollard and Newman [6]; Coltrin et al. [7]). 

Some three-dimensional aspects of CVD have recently 
been studied (cf. Cullen [S]). Moffat and Jensen [9. IO] 
solved the steady-state, parabolized heat, momentum, 
and mass-transfer equations for variable property, 

mixed convection in a horizontal channel. They 
included finite rate chemistry in the dilute reactant 
formulation which is discussed below. 

In many CVD problems the fluid mechanics and 
heat transfer can be separated from the chemistry and 
species transport. The reactants often appear as trace 
species in an inert carrier gas; consequently pre- 
dictions of the flow field and the heat transfer can be 
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NOMENCLATURE 

speed of sound 
dimensionless specitic heat 
substantial derivative 
dimensionless frequency. 1 /r 
acceleration of gravity 
Grashof number, ,qc:H”,;~ji 
channel height 
dimensionless thermal conductivity 
channel length 
unit gravitational vector 
local Nusselt numbers on bottom and top 
surfaces, qT,,Hik,,( T, - 7,)) = 
.- k(i;O/?_v)l, = ,), , 
average Nusselt numbers on bottom and 
top surfaces, &H/k,,(T,- T,,) = 
(~~~WL)~,,~,~U,.~, B.r AZ 
dimensionless pressure 
dimensionless pressure due to motion in 
momentum equations 
Prandtl number, v,,/r,, = 2j3 for helium 
power spectrum of axial velocity 
oscillations 
dimensional local heat tlux at bottom and 
top surfaces, -k*(c:Tic??,*)l,*_,,,,, 
dimensional average heat flux at bottom 
and top surfaces, Qf,,!( WL) 
total d~lnensional heat flow rate from 
bottom and top surfaces, 
&g;“, Ax* A-_* 
Raylcigh number, ~cU’/(v,,c~,,) = Gr A 
Reynolds number. CHiv,, 
dimensionless time 
dimensional temperature 

u dimensionless axial velocity 
t7 average dimensional axial velocity at inlet 

of channel 
I dimensionless verticat velocity 
It’ dimensionless spanwisc velocity 
W channel width 
.Y dimensionless axial coordinate 
AX dimensionless grid spacing in axial 

direction 

?’ 

A, 

dimensionless vertical coordinate 
dimensionless spanwise coordinate 
dimensionless grid spacing in spanwise 
direction. 

Creek symbols 

;i 

thermal diffusivity 
dimensional coefficient of thermal 
expansion, 1 /T,, 

b,, Kronecker delta 
I: temperature ratio, (T, - T&T, 
0 dimensionless tempe~ture, 

( T - ~,,)/i T, - T,J 
p dimensionless dynamic viscosity 
\’ dimensionless kinematic viscosity 

P dimensionless density. 

Subscripts and superscripts 
s conditions at hot surface of channel 

(I‘ = 0) 
0 dimensional quantities evaluated at 

temperature T, and to conditions at 
cold surface of channel (,r = 1) 

* dimensional quantity. 

made by solving conservation equations for a single 
species. Furthermore, the deposition is often limited 
by convection and diffusion processes in the gas phase 
[I 1, 131, and for those situations in which the analogy 
between heat and mass transfer is valid, the uniformity 
and magnitude of the deposit can be obtained directly 
from the solution of the energy equation for the carrier 
gas. If the analogy cannot be made, then the species 
equations must also be solved to obtain the deposition 
rates. 

THE HORIZONTAL CHANNEL FLOW 

REACTOR 

An idealized horizontal channel Bow reactor is 
shown in Fig. I. The channel height, H, is usually a few 
centimeters, the channel length, L, is approximately 
I m, and the width, W, is approximately IO cm. 
Although not shown in Fig. 1, an unheated entrance 
length may be present to allow for hydrodynamic 
development of the Bow. A heated substrate, T, z 

FE. I. Horizontal channel reactor geometry and coordinate system 
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1000-1300 K, which is several centimeters to several 

tens of centimeters in length, forms the lower surface 

of the channel. The carrier gas is usually hydrogen or 
an inert gas such as helium, argon, or nitrogen. At the 
channel inlet, the average flow velocity, U, is a few 
centimeters per second. The Reynolds number, Re = 

iiH/v,, and Mach number, U/c, of these flows are small 

(Re z I-100, Ma << 1). The Grashof number, Gr = 

g~H’/v& is between IO’and 10’. The density and other 
properties undergo significant changes due to the large 
temperature differences and the Boussinesq approxi- 
mation (density constant everywhere except in the 

body force term) is not normally valid. 

Ostrach and Kamotani [16] measured the heat 

transfer and temperature profiles in fully developed 
mixed convection of air in horizontal channel flow 

between isothermal plates (lower surface hotter). They 
determined that for 10 < Re < 100, Ra < 8000 the 
flow consisted of well-developed longitudinal rolls. 
Later studies [ 171 were performed for larger Ra in the 
thermally developing region of the flow that showed 

mushroom shaped thermals impinging on the upper 
surface with noticeable upstream disturbances for 
Re’/Gr < 0.1. 

The relative effects of inertia and buoyancy appear 
in the ratio: Re*/Gr. Values of this ratio that are 
typical in CVD (lo-‘-lo- ‘) have been shown (cf. 
below) to result in significant buoyancy effects. 

Secondary flow instabilities can occur varying from 
transverse, traveling waves that are oriented at right 
angles to the main flow to steady, longitudinal rolls 

that are aligned with the main flow. In both cases the 
heat transfer rate from the substrate to the gas is 
increased significantly (when the instability is 

present), and hence the deposition rate would also 
be increased. However, for the transverse waves the 

instability sweeps through the channel at a rate that 
is related to the value of Re*/Gr whereas with longi- 
tudinal rolls the instability remains stationary. Thus, 
these instabilities would be expected to produce 
dramatically different effects on the uniformity and 
thickness of the deposited material. 

Incropera et al. [I81 studied mixed convection in 

horizontal channels for constant heat flux conditions 

and determined that the flow pattern contained 
ascending thermals that developed into mushroom 
shaped longitudinal vortices. The instability became 

time dependent at large downstream distances with 
the heat transfer being characterized by turbulent 

natural convection. 
Platten and Legros [19] performed an analytical 

investigation of buoyant convection in horizontal 
channel flows of finite lateral extent. They determined 

the values of the Rayleigh and Reynolds numbers 
yielding traveling transverse waves. In an exper- 
imental study, Luijkx et al. [20] demonstrated the 
existence of traveling transverse waves in a channel of 
lateral aspect ratio, W/H = 5, that was heated from 
below and cooled from above with a fully developed 
Poiseuille velocity profile for the initial condition. As 

the Reynolds number was increased, the transverse 
waves were eventually replaced by longitudinal rolls. 

Summury qf related research 

Mori and Uchida [ 131 performed a linearized stab- 
ility analysis of fully developed flow in a horizontal 

channel heated from below and predicted an insta- 
bility consisting of steady longitudinal rolls for 
Ra > 1708. Their disturbances were assumed to be 
steady and periodic in the spanwise direction only. 
Experiments confirmed this roll structure and 
increased heat transfer for Re’/Gr > 10. 

Gage and Reid [14], in a three-dimensional time- 
dependent stability analysis of the linearized equa- 
tions for thermally stratified plane Poiseuille flow of 
infinite horizontal extent, also found that the flow 
was unstable for Rayleigh numbers greater than 1708 
(Ra = geH’/(v,rs,) = Gr Pr, where Pr is the Prandtl 
number; Gage and Reid considered only the Pr = 1 
case). Although the occurrence of a longitudinal roll 
instability (axis aligned with the main flow) was inde- 
pendent of the value of Re, other flow instabilities 
were allowed including traveling transverse waves 
(axis perpendicular to the main flow direction) 
depending on the relative values of Re and Ra. 

Chiu and Rosenberger [21] determined exper- 

imentally the thermal entry lengths for the onset of 
instability and the development of the flow of nitrogen 
in a horizontal channel with an inlet parabolic flow 
profile for 1368 < Ra -C 8300 and 15 < Re < 170 and 

W/H = IO. They observed steady longitudinal rolls 
for Re’/Gr = 0.3 ; however, for large Ra and small Re 

(Re’/Gr % 0.03) they noted that the longitudinal rolls 
were unsteady and indicated that this was due to a 
combination of traveling transverse waves and longi- 
tudinal rolls. 

Recently, transient two-dimensional mixed con- 

vection in a horizontal channel was studied numeri- 
cally and traveling transverse waves for values of 
Re*/Gr ranging from 10-j to 10-I were predicted 
[22,23]. 

Moffat and Jensen [9, IO] solved the steady, three- 

dimensional parabolized Navier-Stokes equations 
numerically for variable property mixed convection 
flow in a horizontal channel (W/H = 4, L/H = 10) 

for Re = 64, Gr = 1.87x 10’ (Re*/Gr = 0.022). The 
resulting flow patterns consisted of steady, longi- 
tudinal rolls. 

Akiyama et al. [15] used flow visualization and The previous studies have shown that traveling 
temperature measurements to verify thermal insta- transverse waves occur in a channel flow that is heated 
bility in the fully developed flow of air in a horizontal from below when Ra is greater than a critical value 
channel heated from below for Ra > 1708. Evidence and Re is sufficiently small. As Re*/Gr is increased 
of longitudinal structures was apparent for values of much above 0.1 (for Pr z 
Re’/Gr as small as 0.007. 

l), the traveling transverse 
waves are replaced by longitudinal rolls. For very 



large values ofRe’/Gr. the flow is dominated by forced 
convection. It is emphasized that the values of Re’/Gr 
that occur in CVD cover the range of parameters that 
include both traveling transverse waves and longi- 
tudinal rolls. 

We have investigated the three-dimensional tran- 

sient mixed convection flow in an idealized horizontal 
channel CVD reactor that is heated from below and 
cooled from above (CT. Fig. 1). We have determined 
that the flow patterns are complex and time dependent 
and consist of both traveling transverse waves and 
spanwise recirculating regions. 

GOVERNING EQUATIONS 

The conservation equations for a fluid continuum 

are valid for most CVD applications even when the 
pressure in the system is only a few Torr. However, 
at these low pressures, the assumption that the fluid 
flow and the heat transfer in the carrier gas are sep- 
arable from the reacting species is no longer valid 
because the reacting species now form a large fraction 
of the gas in the system. Thus, the applicability of the 
present results to CVD is limited to situations when 
the carrier gas is the dominant species. 

The geometry is shown in Fig. 1. The equations are 
made dimensionless with channel height H, buoyant 

velocity \li(y~H), time J(H/(ye)), pressure pd&H, and 
temperature difference 7’. - T,, with 0 = (T- T,)/ 
(T, - T,,), where r, and T,, are the temperatures of 

the lower and upper surfaces of the channel, respec- 
tively. The fluid properties are made dimensionless 
with the values evaluated at the temperature T,, 
designated by the subscript ‘0’. We emphasize that 
the Boussinesq approximation is not invoked. The 
dimensionless equations for an ideal gas are 

(1) 

where 

In equations (2) and (4) we have utilized the results 
of a small Mach number expansion of the pressure 
[24] which is also discussed in ref. [23]. The hydrostatic 
component of the pressure and the body force are 
included in the second term on the right-hand side of 
equation (2) where n, is the unit gravitational vector. 
In the energy equation (3). viscous dissipation and 
compressibility effects associated with DpiDr arc 
ignored and the Prandtl number Pr is defined as I’,,/cI~,. 
In equation (4) p\ is the dimensionless gas density. 
evaluated at the temperature of the heated lower 
surface. 

We restrict the analysis to the following conditions : 
L/H = 8; WiH = 2; fully developed velocity profile 
initially and at the channel entrance (at .Y = 0): adia- 

batic side walls (at 3 = 0,2); small temperature 
differences (E = 0.01) corresponding approximately to 
constant property conditions ; helium gas (Pr = 2/3) ; 
and a temperature profile that varies linearly from the 
bottom to the top of the channel is applied tnitially 
and at the channel entrance. Although as noted 
earlier. most CVD conditions do not correspond to 
the constant property situation, we choose in this 
work to focus on the combined effects of buoyancy 
and forced convection flow and not on the variation 
of transport properties. We have made preliminary 
calculations with variable properties for helium and 
the results are qualitatively similar. Specifically, the 

initial and boundary conditions are : 

at t = 0 

u = 6(Re/Gr”2) y-y2 

1 

for t>O 

u = 6(Re/Gr”“) 

8 = (r, - T,,)IT,, 
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for x=0, 04~61, O<Z< W/H; 

for x= L/H, 0 <y < 1, 0 <z< W/H; 

for O<x<LIH, O<z< W/H, y=O; 

11 = L’ = 1,’ = @ = 0, 

for O<X< L/H, O<z< W/H, y= 1. (6) 

Note that the velocity scaling has been chosen to 
analyze flows with small values of Re’/Gr. The six 
parameters in the above equations and boundary con- 

ditions are: Re, Gr, Pr. E, L/H, and W/H. The infinite 
series in the expression for the fully developed u vel- 
ocity (cf. pp. 150-I 52 of ref. [ 191) in equations (5j and 
(6) converges quickly (20 terms have been used in the 
present study). 

NUMERICAL SOLUTIONS 

Solution method and determination of accuracy 
Equations (l)-(4) with initial conditions (5) and 

boundary conditions (6) are integrated over control 
volumes and finite differences are used to discretize 
the derivatives. A central difference formulation is 
used for all spatial derivatives and a backward Euler 
method is applied to the time derivatives. The solution 
method is semi-implicit and is based on the TEACH 

code (cf. Gosman and Pun [25]). The momentum and 
energy equations are solved implicitly along lines that 
are normal to the four channel surfaces and the equa- 
tion for pressure is solved implicitly along lines both 
normal and parallel to the channel surfaces in an 
alternating fashion. The SIMPLER method described 

by Patankar [26] is used to determine the pressure 
field. Under-relaxation factors of 0.9 and 0.8 are used 
in the solution of the momentum and energy 
equations, respectively. There is no under-relaxation 
of the pressure equation. At each time step, in order 
to obtain an accurate transient solution, the equations 
are iterated until the following convergence criteria 
are achieved : at each grid point and for each depen- 
dent variable, the relative change from one iteration 
to the next must be less than 1 part in 10’ and the 
absolute change must be less than 1 part in 106. Once 
these iteration criteria have been achieved for all of 
the dependent variables, a check is then made of the 
relative and absolute changes of all of the dependent 
variables at all of the grid points from the preceding 
time to the current time. If any variable at any grid 
point changes by more than 10% between time steps, 
the result is rejected, the current value of the time step 
is halved and the computation is repeated for the new 
current time. The residuals of the equations (absolute 
values summed over the grid and normalized by the 
number of control volumes) are also checked and 
typical values at convergence are between IO- 4 and 

10 5. Global energy and momentum balances are 

maintained to better than 1% at each time step. 

The sensitivity of the results to the grid size and the 

time step have been obtained. As an example, for the 
case Re = 5, Gr = 5000, the changes in the local and 
average Nusselt numbers on the lower and upper sur- 
faces of the channel when the number of x grid points 
was increased from 81 to 101 was less than 1%. Simi- 
lar changes occurred when the number of z grid points 
was increased from 21 to 32, and when the number of 

_y grid points was reduced from 21 to 15, the changes 
in the Nusselt numbers were between 2 and 3%. 

Consequently, for the results presented here, an 
(.u,J., r) grid of (81,21,21) points was used. The time 

step was 0.2 ; for the above case, results for the average 
and local Nusselt numbers on the lower and upper 
surfaces of the channel changed by less than 0.5% 
when the time step was halved to 0.1. 

Results 
Equations (l)-(4) with boundary conditions (6) 

were integrated, starting with the initial conditions 

(5) until the time average of the spatially averaged 
Nusselt numbers (defined below) on the lower and 
upper surfaces of the channel became stationary. We 
define stationarity to be the condition when the spa- 
tially averaged Nusselt numbers change by less than 
2 % over a time interval that is large compared to the 
characteristic time of the system. Two cases have been 

studied in detail to examine the unsteady, three- 
dimensional interactions between buoyancy and 

forced flow, namely Re = 5 and 10, for Gr = 5000, 
L/H = 8, W/H = 2, and E = 0.01 (constant prop- 
erties). Unsteady variations of the three components 
of velocity and temperature are plotted at several 
locations within the channel. Field plots of velocity 
and temperature as well as variations of the local and 
average Nusselt numbers are also presented. 

In Figs. 2(a)-(c), the temporal variations of the tem- 

perature (0) and of the velocity components (u, c) in 
the axial, X, and vertical, y, directions at the center 
point (~,y,r) = (4.0,0.5, 1.0) of the channel are 
shown for Re = 5. The oscillations reach a periodic 
state with 0 and 2) having the same frequency, 

f= 0.032, in Figs. 2(a) and (b) while u in Fig. 2(c) has 
a frequency that is twice this value. The amplitudes of 
the oscillations of 0 and I’ are constant and sym- 

metrical about 0.5 and 0.0, respectively, whereas that 
of u varies slightly in a periodic manner. The results 
are symmetric about the central vertical plane, 
z = 1.0, with the velocity (M’) in the transverse (2) 
direction being essentially zero at 2 = 1.0. Note that 
the symmetry about z = 1.0 has not been assumed, 
The temporal variation of IV in Fig. 3 at the location 
(x,_Y, 2) = (4.0,0.5,0.47) is similar to that of u at the 
center point (cf. Fig. 2(c)). The temporal variations 
of 0, 11 and u at (x, y, Z) = (4.0,0.5,0.47) (not shown) 
are similar although smaller in amplitude in com- 
parison to their respective variations at the center 
point. 
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FIG. 3. Temporal oscillations of the spanwise component 
of velocity, M’, at the point (x.y.z) = (4.0,0.5,0.47) of the 

channel for Re = 5, Gr = 5000. 
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Figures 4(a)-(c) show the temporal variations of 0, 
z’, and u at the center point for Re = 10 after the 

Nusselt numbers have become stationary. Again, per- 
iodic oscillations occur; however, now the frequency 
for 0 and u is significantly higher (,f= 0.068) and the 
amplitudes are much smaller than for Re = 5 (0.21, 
0.17 and 0.007 for 0, u and u for Re = 10 vs 0.5 I, 0.50 
and 0.026 for 0, L’ and u for Re = 5). The frequency 
is higher at Re = 10 due to the greater relative effect 
of forced flow which translates the instability down 
stream at a faster rate. The smaller amplitudes at 
Re = 10 are because the instability has just become 
established at the center point of the channel whereas 
for Re = 5 it was well established. Recall also that for 
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FIG. 5. Power spectrum of oscillations of the axial component 
of velocity, U, at the center point (x,y, z) = (4.0,0.5,1.0) of 

the channel for Re = 10, Gr = 5000. 

Re = 5 the oscillations of 0 and v are symmetric about 
0.5 and 0.0, respectively; however, for Re = 10 the 
average values of 0 and u are now smaller than 0.5 

and negative, respectively. This is consistent with a 
spanwise recirculation where the heated fluid rises 
near the side walls, is cooled along the top and descends 
in the middle of the channel, leading at the center to 
a value of 0 that is smaller than 0.5 and a v velocity 

that is biased negatively, i.e. downward flow. 
The temporal variation of u in Fig. 4(c) shows the 

same fundamental frequency as for 0 and u in Figs. 
4(a) and (b); this differs from Re = 5 which showed 
that the frequency for u was twice that of 0 and v. 
However, the oscillation at Re = 10 is not a single 

frequency, and a power spectral analysis shown for u 
in Fig. 5 reveals significant energy content at the 

second harmonic (f= 0.136). 
For Re = 10, Fig. 6 shows the temporal variation 

of w off the central plane at (x,y, z) = (4.0,0.5,0.47). 
A spectral analysis shows that all of the variables have 

the same fundamental frequency at (4.0, 0.5, 0.47) 

which is also the same at the center (4.0,0.5, 1.0). The 

: 
g 5.0 

4.0 

3.0 

w 

2.0 

1.0 

0.0 
800.0 825.0 850.0 875.0 900.0 925.0 950.0 

FIG. 6. Temporal oscillations of the spanwise component 
of velocity, w, at the point (.x,y,z) = (4.0,0.5,0.47) of the 

channel for Re = 10. Gr = 5000. 

oscillations of 0 and u consist of a single frequency 
at both locations whereas u and w have significant 

energy at the second harmonic. Recall that for Re = 5 
there is little energy content for w at the second har- 

monic (cf. Fig. 3). 
The temperature fields on the vertical central plane, 

z = 1.0, are shown in Fig. 7(a) for Re = 5, and in Fig. 

7(b) for Re = 10. In both cases, the fields are shown 
at a time (t = 270.6 for Re = 5 and t = 869.4 for 
Re = 10, cf. Figs. 2(a) and 4(a)) of maximum tem- 
perature at the center point of the channel. At the 
higher Re there is an axial delay of the onset of the 

thermal instability. This delay also occurred in our 
earlier study of two-dimensional transverse traveling 
waves in a horizontal channel flow [23]. 

In Figs. 8(a) and (b), the velocity fields are shown 
in the spanwise (yz) planes at the two axial locations, 
x = (4.0,5.0), for Re = 5 at the same time, t = 270.6. 

The flow pattern at x = 4.0 and also at x = 6.0 (not 
shown) consists of fluid that is primarily ascending in 
the yz plane, with only a small z component of velocity 
near the adiabatic side walls. However, at x = 5.0 and 
also at x = 7.0 (not shown), the motion is essentially 
the opposite, i.e. primarily descending. Note that the 

. 
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> 

0.0 
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X 

FIG. 7. Temperature fields in the vertical central plane (z = 1.0) of the channel at a time of maximum 
temperature at the center point, (x, y, z) = (4.0,0.5,1 .O), for Gr = 5000 : (a) Re = 5, t = 270.6 ; (b) Re = 10, 

i = 869.4. 
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FIG. 8. Velocity fields in spanwise (I’-_) planes for Re = 5, Gr = 5000. I = 170.6: (a) .x = 4.0: (b) .V = 5.0 

locations .Y = (4.0,6.0) correspond to positions of 
crests of the transverse traveling waves as shown in 
Fig. 7(a) while there are troughs at .Y = (5.0,7.0). The 
velocity vectors in the central S_Y plane are displayed 
in Fig. 9 at t = 270.6. At a later time, I = 286.4, 
which corresponds to a time of minimum tempera- 
ture at the center point (one-h~lf period later, cf. Fig. 
2(a)), the flow patterns in the _C planes discussed 
above are exactly reversed (not shown). The exact 
reversal is consistent with the symmetrical oscil- 
lations previously discussed in connection with 
Figs. 2(a) and (b). 

For Re = 10 the spanwise (JY) velocity fields are 
shown in Figs. IO(a) and (b) at .Y = 5.0 for t = 869.4 
(time of maximum center point temperature) and 

f = 876.8 (time of minimum center point temperature, 
one-half period later, cf. Fig. 4(a)). In contrast to 
Ra = 5 discussed above, the flow patterns now are not 
exactly reversed. The central downward flow in Fig. 
IO(a) exhibits a recirculation which is stronger than 
for upward flow in Fig. 10(b). A similar inexact rever- 
sal occurs for these two times at I = 4.0. This is con- 
sistent with Figs. 4(a) and (b) which show a negative 
bias for c and a non-symmetrical bias for 7’ that is 
below 0.5. Studying the spanwise velocity fields at the 
two times shows an axial progression (not shown), 
i.e. the primarily upwelling velocity held that was at 
.Y = 4.0 at r = 869.4 has translated to .Y = 5.0 and has 
strengthened at the later time f = 876.8. etc. 

Figures II and 12 show the temporal variations of 
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(a) 

tb) 

FIG. 10. Velocity fields in spanwise (yz) plane (x = 5.0) for Re = 10, Gr = 5000: (a) t = 869.4; 
(b) t = 876.8. 
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FIG. 1 I. Average Nusselt numbers on the lower hot surface 
(---) and the upper cold surface (---) of the channel for 

FIG. 12. Average Nusselt numbers on the lower hot surface 
(+-) and the upper cold surface (---) of the channel for 

RE = S.Gr= 5000. Re = 10,Gr = 5000. 

the Nusselt numbers averaged over the bottom and 
top surfaces for Re = 5 and 10. The average Nusselt 
numbers are defined by 

is related to the number of waves in the channel which 
varies with time. For Re = 10 the amplitude on the 
lower heated surface is larger than on the upper cooled 
surface although the time averaged values are the 
same (1.14). For Re = 5 the amplitudes on both sur- 
faces are equal and the time averaged values are 1.44 
on both surfaces. 

Figure 13 shows the local Nusselt numbers foe 

ZH 
N"'.u 3 k,(T,TT,) 

= z 1 Nu,,, Ax A;. 
WL ,,u 

(7) 

The variation is periodic with constant amplitude and 
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Fro. 13. Local Nusselt numbers on the lower hot surface 
(--) and the upper cold surface ( --) along the central 
vertical plane (3 = 1 .O) of the channel at a time of maximum 
temperature at the center point, (.v,y,:) = (4.0.0.5,i.O). for 

RP = 5. GI. = sooo. t = 270.6. 

RP = 5 on the lower and upper surfaces as a function 
of I along the center plane, z = I .O, at t = 270.6. The 
local Nusselt numbers on the lower and upper surfaces 
of the channel are defined as 

Note that the local Nusselt numbers are defined in 
equation (8) to yield a value of unity when a linear 
temperature gradient, corresponding to heat con- 
duction in a fluid with constant thermal conductivity. 
exists between the horizontal surfaces. At x = 4.0 the 
heat transfer is a local minimum on the lower surface 
and is a local maximum on the upper surface. This 
time corresponds to a maxima in both the temperature 
0 and the vertical velocity L’ (cf. Figs. 2(a) and (b)) at 
the center point of the channel. In contrast, at 
t = 286.4 (not shown), at .Y = 4.0 the heat transfer is 
now a local maximum on the lower surface and it is 
a local minimum on the upper surface, corresponding 
to a minimum in temperature and strong downward 
flow (cf. Figs. 2(a) and (b)). 

Figure 14 shows the local Nusselt numbers for 

2.0- 

NW,, 

0.0-l 
0 2 4 6 8 

X 

F’IG. 14. Local Nusselt numbers on the lower hot surface I-K. 15. Local Nusselt numbers on the lower hot surt’ace 

(----) and the upper cold surface (---) along the central 
vertical plane (z 1.1 ,O) of the channel at a time of maximum 

(----) and the upper cold surface (- ~- -) along the spanwise 
(y) plane (X = 4.0) of the channel at a time of maximum 

temperature at the center point, (x, y, z) = (4.0,0.5, I .O), for temperature at the center point, (x, ,r, z) = (4.0.0.51 .O). for 

Re = 10. Gr = 5000. t = 869.4. 

Re = 10 on the lower and upper surfaces as a function 
of .Y along the center plane, z = 1.0, and I = 869.4. 
Similar trends to those discussed above for Fig. 13 xc 
observed. Note that the heat transfer does not deviate 
from pure conduction until the ins~bility begins near 
.Y = 3. The peak local heat flux in the unstable flow 
region is between 2.5 and 3 times greater than the 
value in the stable region .Y < 3, where the heat trans- 

fer is by conduction alone. 
Figure 15 shows the local Nusselt numbers for 

.v = 4.0 on the lower and upper surfaces as a function 
of spanwise coordinate L at I = 270.6 for RLJ = 5. As 
in the previous cases, this time corresponds to the 
occurrence of a maximum in 0 at the center poinr. 
Also recall that in Fig. 13 the mid variation of Nu,,, 
on the centerline (2 = I .O) at time t = 270.6 has a local 
minimun? (on the lower surface) and maximum (on 
the upper surface) at .Y = 4.0. An exact reversal in 
Nu,,, (not shown) at this _r~ plane (X = 4.0) occurs at 
t = 286.4. At the center point this is consistent with 
the symmetric oscillations of temperature and vertical 
velocity discussed above; presumably these symmetric 
oscillations extend over the entire span in Z. 

Figures 16(a)-(d) show the spanwise (-_) variation 
of the local Nusselt numbers for I = 4.0 and 6.0 on 
the lower and upper surfaces at t = X69.4 and 876.8 
for Rc = IO. Comparing Nu,,, at s = 4.0 (Fig. 16(a)) 
and 6.0 (Fig. 16(c)) at f = 869.4 shows both the 
increasing magnitude and the increasing spanwise 
variation that occurs as the instability becomes cstab- 
lished further downstream in the channel (cf. Figs. 
7(b) and 14). This trend of increased spanwise vari- 
ation with increasing axial distance is markedly shown 
at the time t = 876.8 in Figs. 16(b) and (d). Also, 
comparing Figs. 16(a) and (b) shows a reversal as for 
Re = 5, but now the lack of syInmetry in the oscil- 
lations (for 0 about 0.5 and for r about 0.0, cf. Figs. 
4(a) and (b)) results in less than an exact reversal. Note 
that for .Y = 4.0 the two times displayed correspond 
to maxima and minima in temperature and vertical 
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Rc = 5, Gr = 5000, t = 270.6. 
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FIG. 16. Local Nusseh numbers on the lower hot surface 
(--) and the upper cold surface (---) along spanwise (ur) 
planes of the channel at times of maximum (t = 869.4) and 
minimum (t = 876.8) temperature at the center point, 
(.u.v.z) = (4.0.0.5. l.O),for Re = lO,Gr = 5000:(a)x = 4.0. 
I = 869.4; (b) x = 4.0, t = 876.8; (c) x = 6.0, t = 869.4; 

(d) x = 6.0, I = 876.8. 

velocity at this position. Figures 16(c) and (d) 
(x = 6.0) also show an inexact reversal which is now 
much more pronounced than that shown in Figs. 16(a) 

and (b) at x = 4.0. This inexact reversal is due to both 
the lack of symmetry in the oscillations for 0 and u 
as noted above, as well as the fact that these times do 
not necessarily correspond to maxima and minima at 
the location x = 6.0. 

For t = 876.8, at x = 6.0, the variation in heat 

transfer with spanwise coordinate z (cf. Fig. 16(d)) is 
large (similar in magnitude to the axialvariation along 

the channel centerline). Note that the maximum heat 
transfer on the lower surface occurs in the central part 
of the channel but on the upper surface the maximum 
is near the side walls. This is further evidence of the 
spanwise recirculation discussed above which is begin- 

ning to have a large influence at ‘large’ x on the span- 
wise variation of the heat transfer. 

In ref. [23] we studied the two-dimensional flow in 

a horizontal channel for conditions typical of CVD 
and observed transverse traveling waves. Since the 
Gr = 5000 with Re = 5 and 10 conditions were not 

discussed in ref. [23], we have performed these 
additional calculations of two-dimensional flow in a 
horizontal channel with E = 0.01 and L/H = 8.0 to 
compare with the current three-dimensional results. 
For Re = 10, the two-dimensional results do not show 
an instability, suggesting that the side walls may be 
contributing to the instability for this condition. The 
destabilizing effect of adiabatic side walls at smaller 

values of W/H has recently been studied by Chou 
and Lin [27]. For Re = 5 the two-dimensional flow is 
unstable and the average Nusselt numbers are 10% 
larger and the frequency of the traveling waves is 32% 
greater than the three-dimensional results. Thus, for 
this condition the side walls appear to be damping the 

instability and reducing the heat transfer. 

SUMMARY 

We have predicted the unsteady, three-dimensional 
flow associated with the Rayleigh-BCnard thermal 

instability in a horizontal channel with a heated bot- 

tom surface and a cooled top surface. The velocity 
and temperature fields and the local and the average 
Nusselt numbers from the heated and cooled surfaces 
of the channel have been determined. The flow field 
and heat transfer are quite complex due to the inter- 
actions of traveling transverse waves, which sweep 
periodically through the channel, with longitudinal 
rolls, which results in significant recirculation in the 
spanwise direction, especially for Re = 10. 

The comparison of these results with two-dimen- 
sional simulations shows complex effects of the side 
walls of the channel. For Re = 10, the side walls 
appear to contribute to the instability, whereas for 
Re = 5 the side walls appear to be damping the insta- 
bility and reducing the heat transfer. Both two- and 
three-dimensional simulations show that the onset of 
thermal instability is delayed by increasing Re. 
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The heat transfer is increased considerably when 
the instability is present. For Re = 5, the average heat 
transfer is as much as 50% larger (the time average 
value is 44% larger} than the conduction values in 
fully deveIoped horizontal channel flow, and for 
Re = 10 the peak local heat fluxes are three times 
larger than the fully developed flow values. For CVD 
applications the additional transfer resulting from the 
instability would significantly increase the deposition 
rate in the transport limited regime. Furthermore, 
since the instability results in a periodic flow 
condition, irregularities in the heat flux are smoothed 
out over time. However, careful control over the redc- 
tor operating parameters would be required to avoid 
flow conditions which result in the steady. longi- 
tudinal vortices that have been noted in some studies. 
These flow instabilities would yield striations in the 
deposited material. This study is of fundamental inter- 
est in respect to convective transport and should also 
help designers of CVD reactors gain a better under- 
standing of the processes which occur in these systems. 
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CONVECTION MIXTE TRIDIMENSIONNELLE VARIABLE DANS UN CANAL 
HORIZONTAL CHAUFFE AVEC APPLICATION A LA DEPOSITION 

CHIMIQUE DE VAPEUR 

Rbumun Ctudie I’ecoulement et le transfert chimique d’un gaz dans un canal horizontal avec une 
surface inferieure chauffee, une surface superieure refroidie et les parois laterales adiabatiques. Les solutions 
numeriques des equations tridimensionnelles transitoires de Navier-Stokes et d’energie r&&lent que le 
fluide est instable thermiquement pour les conditions pratiques de la deposition chimique de vapeur (CVD). 
L’instabilitt apparait comme la combinaison d’ondes progressives transverses et de rouleaux longitudinaux. 
La nature variable de I’ecoulement et du transfert thermique est montree pour deux nombres de Reynolds 
RE = UH/v, (5 et IO), un nombre de Grashof Gr = gcH’/vf, = 5000, un nombre de Prandtl Pr = vII/xO = 2/3, 
des rapports de forme L/H = 8 et W/H = 2, pour le rapport de temperature E = (T, - TJT, = 0,Ol et 
correspondant a des proprietes constantes du fluide. L’instabilitt s’accompagne d’un accroissement du 
transfert thermique moyen entre 15% et plus de 40% par rapport a la condition d’ecoulement etabli sans 

instabilite. 

NICHTSTATIONiiRE DREIDIMENSIONALE MISCHKONVEKTION IN EINEM 
BEHEIZTEN WAAGERECHTEN KANAL FUR ANWENDUNGEN DER CHEMISCHEN 

DAMPFABSCHEIDUNG 

Zusammenfassung-Es werden Stromung und Warmeiibertrdgung in einem Gas in einem waagerechten 
Kanal untersucht. dessen Oberfllche im unteren Teil beheizt. im oberen Teil gekiihlt und an den Seiten 
adiabat ist. Numerische Losungen der transienten dreidimensionalen Navier-Stokes-Gleichungen und 
der Energiegleichung zeigen eine thermische Instabilitit des Fluids fur die Bedingungen bei chemischer 
Dampfabscheidung. Die Instabilitat zeigt sich als Kombination aus querverlaufenden Wanderwehen 
und langsverlaufenden Wirbeln. Die instationlren Eigenschaften von Stromung und Warmetransport 
werden fur folgende Bedingungen gezeigt: Reynolds-Zahl Re = iiH/v,, = 5 und IO. Grashof-Zahl Gr = 
,~~H’II~~ = 5000. Prandtl-Zahl Pr = v,,/a,, = 2,‘3, Seitenverhaltnis L/H = 8 und W/H = 2, Temperaturver- 
hlltnis I: = (T- r,,)iT,, = O,OI, entsprechend einer Stromung mit konstanten Eigenschaften. Die Insta- 
bilitat fiihrt zu einer Verbesserung des mittleren Warmeiibergangs zwischen 15% und mehr als 40% 

gegeniiber dem Wert bei vollstandig ausgebildeter Striimung ohne Instabilitat. 

HECTAHHOHAPHAR TPEXMEPHAI CMEIIIAHHAJI KOHBEKHMII B HAI-PETOM 
FOPH30HTAflbHOM KAHAJIE I-IPM XMMMrIECKOM OCA)ICAEHMH I-IAPA 

Auno~alme_Hccnenyrcn Teqetuie ra3a u rennonepeiioc B ropu30ufanbrior.r tcatrane c riarpesaeMoii 
HH;Kueii H OXnamaaeMOfi BepXHeii no~epxHoc~nMH np~ anHa6aTHSecKHX 60KOBb1x CTeHKaX. %cneHHble 

peureHm rrecramioriaptroro TpexbtepHoro ypaBHeHHn HaBbe-&OKCa H ypaBHeHmi 3Heprm noKa3bk 

nawT,q~o epacchtaTpmaebfbmycnoBHnxxHbtmeCKoro ocaxcneertn napanpoueccnBnneTcnTephtmecKH 

He)‘CTOk’JHBbIM. HeyCTOikHBoc7b B03HHYaeT B BHue COWTaHHn llOIlC~‘fHbIX 6WyU&HX BOJIH H npOnOnb- 

HHX BanoB. I-kcrauHoHapHbG XapaKTep TeqeHHn H TennonepeHoca Hccnenyercn npH AB~X 3HaqeHHnx 

qHcna Peiruonbnca Re = iiH/v, (5 H lo), 3HaqeHHnx wcna rpacro+a Gr = g.sH3/vi = 5000, qucna 
npaHnTnn Pr = v,,/a,, = 213, OTHoweHHnX CTO~OH L/H = 8 H W/H = 2 H omouewiti TebmepaTyp E = 

(T. - T,)/T, = 401,npn 3TOM paccMarpm3aercn reqeuuec noCrOKHHblMHCBOiiCTBaMH.HeyCTOiiSHB~b 

npenomiT K eo3pacrraHm-8 Tennonepemca B cpenHeb4 0~ 15% no 6onee 4eM 40% no cpaeueumo c 
llOJlHOCTbtOpa3BHTbIMTe~eHHeM B OTCyTCTBlietieyCTO&iBOCTH. 


